6th INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND EXPERIMENTAL SCIENCE AND ENGINEERING (ICCESEN-2019) 23-27 October 2019, ANTALYA-TURKEY ## Computational Study of the Ozonolysis Reaction through Criegee Mechanism and Dissociation of Secondary Ozonide Mansour H. ALMATARNEH^{1,2⊠}, Ismael A. ELAYAN¹ ¹University of Jordan, Chemistry Department, Amman-JORDAN ²Adjunct Professor, Chemistry Department, Memorial University, St. John's-CANADA ## **Abstract** The ozonolysis reactions occur through the so-called Criegee mechanism. These reactions generate various chemical organic and inorganic species. Carbonyl oxides, commonly known as Criegee Intermediates (Cl's) are the main intermediates from the gas-phase ozonolysis reaction. A comprehensive computational study for the ozonolysis of sabinene and β -pinene (monoterpenes), methylbutenol, phenanthrene (Polycyclic aromatic hydrocarbons, PAHs), and dissociation of secondary ozonide (SOZ) reaction mechanisms have been computationally studied using the density functional theory (DFT) and *Ab Initio* methods. The Criegee mechanism initially involves a highly exothermic 1,3-dipolar cycloaddition of ozone to the double bond to produce primary ozonide (POZ). The POZ dissociates into a highly reactive carbonyl oxide, non-convertible, distinct zwitterionic Criegee intermediate (*syn* and *anti*) conformers, and an aldehyde or ketone, depending on the structure of the monoterpene and PAHs. The mechanistic pathways and thermodynamics of the unimolecular (Vinyl hydroperoxide- and ester-channels), and bimolecular (Secondary ozonide formation, Insertion of H_2O , $2H_2O$) reactions of the CI will be discussed and presented thoroughly. Keywords: Ozonolysis, Criegee Intermediates, Sabinene, Methylbutenol, Primary Ozonide, Secondary Ozonide | ☐ Corresponding Author Email: m.almatarneh@ju.edu.jc |) | | |--|---|--| | <i>:</i> | | | | | | |